Silting Complexes and Partial Tilting Modules
نویسندگان
چکیده
منابع مشابه
Intermediate Co-t-structures, Two-term Silting Objects, Τ-tilting Modules, and Torsion Classes
If (A,B) and (A′,B′) are co-t-structures of a triangulated category, then (A′,B′) is called intermediate if A ⊆ A′ ⊆ ΣA. Our main results show that intermediate co-t-structures are in bijection with two-term silting subcategories, and also with support τ -tilting subcategories under some assumptions. We also show that support τ -tilting subcategories are in bijection with certain finitely gener...
متن کاملPartial tilting modules over m - replicated algebras ⋆
Let A be a hereditary algebra over an algebraically closed field k andA(m) be them-replicated algebra of A. Given an A(m)-module T , we denote by δ(T ) the number of non isomorphic indecomposable summands of T . In this paper, we prove that a partial tilting A(m)module T is a tilting A(m)-module if and only if δ(T ) = δ(A(m)), and that every partial tilting A(m)-module has complements. As an ap...
متن کاملRigidity of Tilting Modules
Let Uq denote the quantum group associated with a finite dimensional semisimple Lie algebra. Assume that q is a complex root of unity of odd order and that Uq is obtained via Lusztig’s q-divided powers construction. We prove that all regular projective (tilting) modules for Uq are rigid, i.e., have identical radical and socle filtrations. Moreover, we obtain the same for a large class of Weyl m...
متن کاملTilting Modules and Universal Localization
We show that every tilting module of projective dimension one over a ring R is associated in a natural way to the universal localization R → RU at a set U of finitely presented modules of projective dimension one. We then investigate tilting modules of the form RU ⊕ RU/R. Furthermore, we discuss the relationship between universal localization and the localization R → QG given by a perfect Gabri...
متن کاملConstructing Tilting Modules
We investigate the structure of (infinite dimensional) tilting modules over hereditary artin algebras. For connected algebras of infinite representation type with Grothendieck group of rank n, we prove that for each 0 ≤ i < n− 1, there is an infinite dimensional tilting module Ti with exactly i pairwise non-isomorphic indecomposable finite dimensional direct summands. We also show that any ston...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics
سال: 2020
ISSN: 2227-7390
DOI: 10.3390/math8101736